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The local mass transfer of a flat plate in a longitudinal non-Newtonian
fluid flow has been analytically and experimentally investigated, The
agreement between experiment and calculation is completely satis-
factory. The effect of the rheological characteristics of the solution on
the location of the laminar-turbulent boundary layer transition has
been established,

In recent years, there has been a considerable in-
crease of interest in problems of convective transport
in non-Newtonian fluids. Against the fairly extensive
background of publications on rheodynamics and heat
transfer in fluid systems of a general type, theoreti-
cal and experimental studies of mass transfer are
conspicuous by their absence. At the same time, prob-
lems of this class are important in theory as well as
in practice, since diffusion in non-Newtonian disperse
systems and polymer solutions has its own particular
characteristics that distinguish it from the heat trans-
fer process. In particular, the coefficient of diffusion
of a polymer in a low~molecular-weight medium is not
only several orders lower than the thermal conduc-
tivity of the same solution, but also exhibits an ex-
ceptionally strong and nonlinear concentration depen-
dence, whereas the thermal conductivity varies only
very slightly. As yet there have been no studies of the
effect of the rheological characteristics of shear flow
on the convection of an additive under the conditions
of the external and internal problems.

This article reports the results of an analytic and
experimental investigation of the mass transfer in the
boundary layer on a plate in a longitudinal flow of so-
called "power-fluid-law" non-Newtonian fluid.

Analytic investigation. The starting system for the
plane problem of a laminar boundary layer is written
in the form
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The velocity distribution given by (1)—(3) is as-
sumed known. It is given in [1] in the form of tables
and graphs. We solve Eq. (4) on the assumption of
diffusion kinetics, i.e., for the boundary conditions
of limiting diffusion flow. We also assume that dif-

fusion does not take place over the entire flow surface
but begins at a certain distance hy reckoned from the
leading edge of the plate. Consequently, the portion of
the plate 0 =x =h, is characterized by the condition

j = 0 (passive part of plate).

For all x >h, (active part) the condition ¢ = 0 holds.
From physical considerations it is clear that the lim-
iting flow regime on this part of the plate is not estab-
lished immediately beyond the passive section. On a
certain part of the active surface there will be a tran-
sition to the limiting flow, and here the diffusion mass
transfer will be higher than the corresponding limiting
value reached at x > hy. In this region—let us call it
the stabilization region—longitudinal mass transfer
makes a greater contribution to the total diffusion flux
than in the region of the steady-state limiting regime.
Passing from the physical coordinates x and y to the
variables x and ¥, we reduce Eq. (4) to the form
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The new abscissa x is now reckoned along the stream-
line ¥ = const (in what follows the subscript ¥ indicating
this fact will be omitted). The variable ¥ is reckoned

from the wall (¥ = 0). Equation (5) must be solved for
the following boundary conditions:

:fy =0 at V=0 (x<hy), 6)
c=0 at ¥=0 (x>h), (7)
c=¢, at ¥=0 (x=0), (8)

c=2¢ as W o0 (9)

To relate the quantities u, x, and ¥, we used the
known self-similar solutions of the dynamic problem
for a plate [1],
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The required function n(¥) is established from the ex-
pressions
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and v = — , (12)

satisfying the continuity equation (2).
All liquids (particularly highly viscous ones) are
characterized by the condition Pry, > 1. Then the dif-

fusion boundary layer is much thinner than the dynamic

boundary layer, within which it occupies a narrow re-
gion near the wall. Hence, in finding the concentration
field from Eq. (5) it is necessary to consider not the
total velocity profile but only the part "immersed" in
the diffusion boundary layer. It is customary to em-
ploy for this purpose the one-parameter linear family

=B n)y=[a--(LgU°’)] Lt (13)
n =0

Combining (10)—(13), we arrive at the relation
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Equation (5) now simplifies to

1
s 0c d dc
x.(n‘n__~=3____("@ ) 15)
dx oy 4 Y (
Here,
1
B =2 D@/ UL M (16)

We introduce the new variables
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As a result, we arrive at the new notation,
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Following [2], we first find the solution of the limiting
boundary value problem in the variables £ and ¢ for a
semi-infinite plate without an initial passive section
(hg = 0). Then the boundary conditions simplify to

c—>¢c, as ¢— oo, (22)
c=0 at ¢=0, (23)
c=c, at t=0; ¢ =0. (24)
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The change of variables
0 =g (25)

leads to the equation

d% dc
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The solution of (26) is
@
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Equation (18) is invariant under the group of dis-
placement transformations ¢ + &; ({4 = const). We se~
lect
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satisfies Eq. (18) and conditions (19)—(21).
In the physical variables the solution has the form
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The diffusion flux density on the active sections is
given by the relation
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At n =1 (Newtonian fluid) relations (29) and (30)
automatically go over into the Maiman solution [2].



The ratio of the true and limiting (hy = 0) diffusion
fluxes is expressed by the simple equation
2n+1
o {1 ,_(_h"_>m]a (31)
1. X
lim

Thus, the amount by which the true flux j exceeds
J1jm and the extent of the stabilization region depend
not only on the ratio hy/x but also on the index n of
non-Newtonian behavior.

For pseudoplastic fluids, the development of the
j1im regime requires a greater length x than for New-
tonian fluids. Dilatant systems exhibit the opposite
tendency. The exponent of the ratio hy/x varies from
1/2 (pseudoplastic limit, n = 0) to 1 (extreme dila-
tancy, n — «). For a fixed value of h; the abscissa
at which j and jjjpy, differ, for example, by 5% is
X5q = 10hg for the maximally pseudoplastic fluid,

X50 = 5hy for a Newtonian fluid, and x5q, = 3hy for the
maximally dilatant system.

The solution obtained has two important conse-
quences. First, the effect of the initial passive sec~
tion is manifested the more strongly, the lower the
value of n. This is due to the increased contribution
of the tangential component to the total transverse
mass flux. In the case of large hy/L, the transferable
transverse mass flux density on the entire active part
of the plate differs considerably from jj;y,, despite
the fact that, as before, the process proceeds in the
diffusion region and the condition c[y=0 = 0 is satis—
fied.

Second, the device of an initial passive section
provides a means of controlling convective mass
transfer in a non-Newtonian fluid. New possibilities
are created for the optimum control of mass transfer
processes in the production and processing of poly-
mers and plastics in the fluid state.

We transform the solution obtained to the dimen-
sionless form
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and determine the values of the j fluxes averaged on
the section x~hy:
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The formulas obtained contain the form parameter
of the velocity field, 8j—the only characteristic not
amenable to direct measurement. However, its value
can be borrowed from the solutions of the self-similar
problem of the boundary layer on a semi-infinite plate
or from empirical formulas for the friction stress:
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Detailed tables of F"(0) for various 0 =n =2 (in
steps of 0.1) are given in [1].

Experimental. The experimental method was based
on visualization of the convective mass transfer in a
liquid electrolyte to which electrochemiluminescent
substances (ECL) had been added. If two inert elec-
trodes are introduced into such a solution, a blue lu-
minescence appears at the surface of the anode. Ata
fixed electrode potential, its local intensity is strictly
proportional to the local diffusion flux j(x). References
[3,4] include a detailed description of the ECL method
and its application to the investigation of mass trans-
fer and the hydrodynamics of flow around blunt bodies
(separation, cavities, wakes, etc.) in Newtonian
fluids. The advantages of the method include the fact
that it is free of inertia and the disturbances usually
introduced by the presence of transducers in the flow.
Besides water (solvent), the ECL solution used in the
experiments contained hydrogen peroxide (oxidizer,
active electrolyte), luminol (the chemiluminescent
agent), the sodium salt of carboxymethyl cellulose (non-~
Newtonian pseudoplastic component), potassium chlo-
ride (main electrolyte, so~called background), and so-
dium hydroxide (pH regulator).

The experiments were conducted at the preselected
optimum value of the limiting current ensuring that,
on the active surface of the anode, the condition
CH,0, = 0, assumed in the theoretical calculations,
was satisfied.
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-

Fig. 1. Diagram of the experimental

plate: 1) base; 2) active part of plate

(anode); 3) free surface of gsolution;
4) level of bottom of apparatus.
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The experimental apparatus and its organization
are described in [5]. The experimental body (anode)
was a rectangular platinum plate (active part) bonded
with epoxy adhesive to a thin plexiglas sheet bent in
a circular arc 100 mm in radius so that part of a cy~
lindrical surface was obtained (Fig. 1). In the pres-
ence of an attached uniform coaxially rotating flow,
this model is hydrodynamically equivalent to a flat
plate in a longitudinal translational fluid flow. The
rates of rotation of the vessel were selected so as to
eliminate the effect of the centrifugal forces tending
to distort the free surface and prevent the develop-
ment of waves and instabilities. The platinum plate
could be secured at various distances from the
sharpened leading edge. Thus, we were able to fix
the variable ratio of the lengths of the passive (hg)
and active parts of the plate (Fig. 1). Measurements
were made at hg =7, 23, and 51 mm (i.e., hy/(L +
+ hg) = 0; 0.64; 0.18; 0.33); the Na CMC concentration
in the expei'iments was (%): 0; 0.1; 0.25; 0.5; 0.75; 1;
1.5; 2. The veloeity of the solution relative to the
fixed plate varied from 10 to 50 ecm/sec. As indicated
by estimates [6] and verified by visual observation,
the distances separating the model from the free sur-
face and the lateral walls successfully excluded hy-
drodynamic interference and various side effects.

A special series of experiments was devoted to
the determination of the calibration coefficient k of
the apparatus which establishes the direct propor-
tionality of the photocurrent and the diffusion flow to
the wall. The absolute value of k depends on the opti-
cal properties of the solution, the geometry of the
apparatus, the distance between the sensitive element
of the photomultiplier and the platinum plate, and on
the characteristics of the photomultiplier. The optical
properties of the solutions (absorption, refraction)
varied somewhat with increase in Na CMC concen-
tration owing to the increased turbidity of the solution.
The attenuation of the light signal was measured with
a standard photoelectric colorimeter. As a result, we
obtained the following relation between the transmit-
tance T = I;/Ty and the concentration ¢ of the Na CMC
component:

T = (1.0 + 241! (35)

(Ig and I, are the intensities of the incident and trans-
mitted light fluxes, respectively).

The dependence of the refractive index on the poly-
mer concentration in the electrolyte, obtained in our
measurements with an IRF-22 refractometer, was
linear and is approximated by the equation

n = 1.3413 + 0.124C. (36)

To detect the chemiluminescence, we used an FEU-~
35 photomultiplier. The test plate (anode)was arranged
in one of its focal planes. As a check revealed, the
selected instrument has a linear characteristic over
the entire measurement range; i.e., the output photo-
current is strictly proportional to the intensity of the
anode luminescence. The calibration coefficient k of
the apparatus was determined from the previously ob-
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tained formula (30). For all values of x and U, we ob-
tained the same value k = 2.55 X 1077 (g/uA - sec).

Before beginning the actual experiments we made
certain viscometric measurements and also experi-
mentally determined the dependence of the diffusion
coefficient of the active electrolyte on the concentra-
tion of the non-Newtonian component Na CMC. Rheo~-
metric data on the shear viscosify, obtained with a
capillary instrument and analyzed in accordance with
the Mooney~Rabinovich equation, were found to be
closely correlated with the rheological power equation
over the entire range of shear rates (10°—5-10% sec™.
Values of the parameters n and k for various Na CMC
concentrations are presented in [5], which also con-
tains the viscoelastic properties of similar solutions
taken from [7].

Our D(c) curve obtained on the basis of refractom-
eter measurements by the method described in detail
in [8] is presented in Fig. 2. The sharply non-
linear character and nonmonotonicity of the concen-
tration dependence of the diffusion coefficient are a
distinctive feature of solutions containing macro-
molecules. Consequently, the correct mathematical
solution of the problem of convective mass transfer
should begin with a nonlinear formulation that takes
into account the variability of the diffusion coefficient
and the presence of a maximum on the D(c) curve.

Figure 3 gives the results of measurements at
various concentrations of the non-Newtonian component
for a plate without an initial passive section (hy = 0).
The systematic distribution of the experimental data
is noteworthy; deviations from linearity are observed
only at large values of U,/x (near the leading edge)
and at 1gUa/x < 1 (region of laminar-turbulent tran-
sition). The graphs very accurately reflect the break
in the linear distribution of the experimental points,
which may be treated as a result of the disturbance of
the laminar structure of the boundary layer and tran-
gition to the turbulent mass transfer regime. This is
confirmed by the agreement between the values of
Regr = UwXer/v obtained in our experiments and the
published data for Newtonian fluids. An exact com-
parison of the values of Regp is not possible owing to
inevitable differences in the degree of freestream tur-
bulence. ’

As far as non-Newtonian fluids are concerned,
nothing based on direct observations has yet been pub-
lished regarding the transition point (region) on a plate

5
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Fig. 2. Diffusion coefficient (cm?/sec)
as a function of the Na CMC concen-

tration (g/cma).
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Fig. 3. Mass transfer in the laminar and turbulent regions of the
boundary layer as a function of Na CMC concentration: (a) 1)
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6879; 4) 0.75% and 3422; 5) 1% and 1378; 6) 1.5% and 437.

in a longitudinal flow. Therefore, the data presented
for the first time in Fig. 3 have a certain theoretical
and applied interest. First, we note that, as in a New-
tonian fluid, as U, increases the transition point is
shifted upstream. Second, moderate Na CMC concen-
trations (up to 1%) shift the xop in the direction of the
trailing edge as a result of the simultaneous action of
increased viscosity and the intensified pseudoplastic
properties of the solution. The effect of the first factor
is expressed through a decrease in Reynolds number;
that of the second, as a more favorable ratio between
the forces of inertia and friction drag. With further
increase in polymer concentration this increase in Xqyp
ceases and an opposite tendency is distinctly observed—
the transition region begins to move against the flow

in the direction of the leading edge. An analysis of the
experimental data yields the following empirical rela-
tion for the transition point, which is valid for our
range of variation of the experimental parameters:

1

102 < p ULl .
< Lre do 50 (37)

In [9] the following rough estimate is given for the
abscissa of the transition from a laminar to aturbulent
layer:
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The auxiliary quantity A(n), taken from the approxi-
mate calculations of Acrivos et al. [10], varies from
0.8 to 0.332 on the interval 0.1 =n =<1. In Fig. 4
Skelland's approximation is compared with our data.
The agreement is very satisfactory, and the deviation
does not exceed +4%. It is interesting to note that: a)
the numerical value of the complex figuring in Skel-
land's inequality almost coincides with the value of the
generalized Reynolds number; b) the left-hand limit of
inequality (37) is much lower than in (38). Evidently,
at considerable polymer contents the value of Reqp
depends not only on the shear viscosity characteristics
but also on the viscoelastic properties of the systems

5

Fig. 4. Recy as a function
0 of n (curve 1—Skelland ap-
proximation [9], points—
our experimental data): A)
Z from formula (37), B) from

/‘ formula (38).
T
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i. e., it is to a large extent determined by the size and
configuration of the macromolecules and their concen-
tration in the solution. This result and the conclusion
that follows from it are also confirmed by the earlier
data of Schnurmann [11,12}, who established for solu-
tions of polyisobutylene and other macromolecules
that Regy = 10.

The data, presented in Fig. 5, for the laminar part
of the boundary layer of a Newtonian ECL solution are
closely correlated with the known formula

Nu,, = ARe5[1 — (hy/x)/* 172 (39)
(here, Pry, has been fixed). Thus, the accuracy and
reliability of the measurements based on the ECL
method have again been demonstrated. The series of
curves in Fig. 6 generalizes the results of the experi-
ments with non-Newtonian ECL solutions. The analytic
solution (30) is represented by the solid lines.

CONCLUSIONS

1) The experimental data for all Na CMC concen-
trations and various (hy/x) are satisfactorily corre-
lated when expressed in terms of the complexes

NumPe“h[ 1— (%
the frequently used complex NumPe"l/ 3 the product
NumPe‘1 % does not explicitly contain the rheological
parameters n and k. The greater spread of the experi-
mental points at low Na CMC concentrations and small
Re is evidently associated with disturbances introduced
into the boundary layer from the wake.

211
oty s
) e J and Re. As distinct from
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2) The analytic solution of the problem (30) suitably
generalizes the experimental data at concentrations up
to 1% Consequently, the nonlinearity of the D(c) curve
does not have much effect on the diffusion flow to the
wall. The systematic deviation of the experimental
points from the theoretical relation (30) for ¢;=1.5%
is attributable both to the nonlinearity of the diffusion
coefficient and to the elasticoviscous behavior of the
ECL solution. Kotaka [7] has established that for
aqueous solutions of Na CMC of the alkaline type (with
pH >9) at flow shear rates of 10% sec"l, the normal
stress differences already appreciably exceed the
shear stresses. It may also be assumed that the elasti-
coviscous properties begin to appear earlier, but that
their influence on the j fluxes is compensated by the
strong nonlinearity of the concentration dependence of
the diffusion coefficient on the ascending branch of the
D(c) curve. In the descending region of the D(c) curve
(c = 1%), the elasticoviscous properties should have a
stronger influence on the local Nusselt number Nuy,.

NOTATION

k and n are the rheological parameters of the con-
stitutive power equation; 7 is the shear stress; F(n)
is a dimensionless stream function; Regr = U°°Xcr/"'eff
is the critical Reynolds number for a Newtonian fluid;
Pey = UeoX/D is the local (mass transfer) Peclet number;
Nuy, =jx/Dcy is the local (mass transfer) Nusselt num-
ber; Re = Uf;n x1 p/k is the generalized Reynolds num-
ber. Subscripts: m refers to mass transfer; lim rep-
resents limiting; 0 means remote from the wall, in the
fluid volume; cr refers to critical.
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